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THE RELATION OF FINITE ELEMENT AND FINITE DIFFERENCE METHODS

By
Marcel Vinokur

SUMMARY

Finite element and finite difference methods are examined in order to
bring out their relationship. It is shown that both methods use two types
of discrete representations of continuous functions. They differ in that
finite difference methods emphasize the discretization of independent
variables, while finite element methods emphasize the discretization of
dependent variables (referred to as functional approximations). An
important point is that finite element methods use global piecewise
functional approximations, while finite difference methods normally use
local functional approximations. A general conclusion is that finite
element methods are best designed to handle complex boundaries, while
finite difference methods are superior for complex equations. It is also
shown that finite volume difference methods possess many of the advantages

attributed to finite element methods.



INTRODUCTION

The theoretical prediction of a three-dimensional flow past an arbitrary
body requires a numerical solution. The traditional approach, which has been
highly developed, is to use a finite difference method. Recently, the finite
element method has been proposed as an alternative procedure. In order to
evaluate the relative advantages and disadvantages of the two methods, it is
essential to understand their common basis as well as their fundamental differ-
ences. The present work attempts to do this by showing that both methods use
two types of discrete representatations of continuous functions. The differ-
ences in the two methods stem from the relative emphasis given to these
representations.

Since both finite difference and finite element descriptions employ
different notations, each with a myriad of indices, we will use a rather
cavalier notation with a minimum of indices. The notation, as well as some
mathematical concepts that may be somewhat unfamiliar, are discussed in the
next section. This is followed by a description of the two types of discrete
representations of continuous functions. This framework is then used to
examine and relate the finite difference and finite element methods as applied

to continuous field problems.

MATHEMATICAL PRELIMINARIES AND NOTATION
A lower case letter will denote a function of real variables, e.g.,
u = f(x) . 1)
The letter f denotes the functional rule, while x stands for a set of independ-
ent variables (which may be general, curvilinear coordinates) spanning a
domain V with a boundary S. The dependent variable u can represent a vector
set of unknowns, in which case (1) is a set of equations. If the dependence

on only some of the independent variables will be discretized, we will write



(1) as
u = f(x,t) , (2)

where the dependence on the variables x will bé discretized, while the
dependence on the remaining variables t will reméin continuous. A subscript
will denote a partial derivative, or a component of a gradient. Thus, the
differential of (1) is written as

du = uxdx = fxdx s 3
where a summation or dot product is implied. On the other hand, a divergence
will be denoted by the symbol 3/9x. Integrations over a domain or a boundary

will be indicated by the lettersV or S under the integral sign. If n is

the normal at the boundary, the divergence theorem can be written as

J %% dx = J fndx . 4)
\'4 S

(Note that the sumbol dx has three different meanings in (3) and (4)).

A capital letter will denote an operator acting on a set of functionms,
e.g.,

v=F). . (5)

Here F is the operator rule, u(x) stands for a set of functions, and v(x) the
resulting function(s) after performing the operation(s). A local operator
involves only algebraic or differential operations, while a non-local operator
involves shifting or integral operations. Let Su(x) denote the variation of

the function u(x), which is a small change in u(x), keeping x fixed. Thus,

éx =0, (6)

and from their definitions, variation and differentiation are commutative, i.e.
Gux = (Su)x . 7

The "differential" of (5) is then defined as



§v = §F(u, u) = lim F(u+du) - F(u) , (8)
|lsuf| + o

where ||6u|| is some norm measuring the magnitude of Su. Here 8F(u,du) is
called the Fréchet differential of F at the point u in the direction Su. If

F is a local operator, one can define a "derivative'. Consider the operator

Fu) = f(x,u,u,u ) . &)

Using (6), (7), and (8), one can write

6F(u,8u) = quu + fu (Gu)x + fu (Gu)xx . (10)
X XX

Using the rule for product differentiation, (10) can be transformed into

§F (u,6u) = {f_ - o= [£, - < (£, )1l6u + S {IE, - (£, )]du+ £, Sul}.
x XX x XX xx
(1D
By analogy with (3), the operator
- 3 3
F, = fu - 5% [fu - 5% (fu )] (12)
x XX

can be called the Fréchet derivative of (9) at the point u. In genezal, the

the Fréchet differential of any local operator F(u) can be expressed as
_ 3
8F(u,8u) = Fusu + 5;-(F°6u + FlcSux + deuxx + i00) 13)

In order to determine if a given operator is a Fréchet derivative, one must
define an adjoint operator. If Gul and 6u2 are two arbitrary variations of u,
one can obtain from (9) the expression
_ 3 3
GUZGF(U ,5111) = {fu6u2 o [‘[fux v (fuxx)}duz - fu 6u2x] ]’6111

XX
(14)

X
XX XX XX

+ {[fux -2 (g, )lSuybuy + £, Sufu - £ 6u, Su} .
The coefficient of Gul in (14) has the form of a Fréchet differential of some
other operator in the direction 6u2. We can thus define an operator ??u)
(within an arbitrary additive function of x) which is adjoint to F(u), such

that



sF(u,6u) = £.0u - 2 £, - o (£, )1du- £, dul. (15)
X xX XX

In general, for any local operator F(u) we can write
9
GuZGF(u,Gul) = 6u16F(u,6u2) + 5;{F006u26u1+ F°16u26u1x + F106u16u2x+...) . (16)

~t
An operator is self-adjoint if F(u) = F(u). Given the operators G(u), Go(u),
Gl(u), etc., the conditions under which

3
Géu + T (GOGu + G16ux+ o)

is equal to a Fréchet differential S8F(u,8u) can be easily determined from
the relation

GF(u,Gul + Guz) = GF(u,Gul) + SF(u + 6u1,6u2) = GF(u,Guz) + GF(u1 + 6u2,6u1).

a7
The condition is found to be
8u,86 (u,8u;) + % [86, (u,6u;)8u, + 66, (u,6u;)du, + ...] -

)
= GuIGG(u,GuZ) +ac [GGo(u,6u2)§u1 + GGl(u,6u2)6u1x+ ees]

It follows that G(u) must be a self-adjoint operator. If (18) is satisfied,

one can easily show that F(u) is given (within an arbitrary additive function

of x) by 1 1 1
Fw) =1u J G(Au)dr + é% [ I GO(Au)dk *u J Gl(Au)dk + ...] (19)
0 0 0

An operator acting on a set of functions which results in a real number is
called a functional. (The norm ||Su]| in (8) is an example.) The discussion
of Fréchet differentials and adjoint operators reveals the presence of annoying
divergence terms. Since these can, in a sense, be removed using the divergence
theorem (4), this suggests that a useful functional is the integral of an
operator over the domain of x, i.e.,

I(u) = J F(u)dx . (20)
vV

Using (13) and (4), it follows that



|
wgZlH

§I(u,du) = J 6F(u,8u)dx = J Fuéudx + J (nFOGu + nFldux + nFZGuxx + ,..)dx .

\' \' S (21)
Expressing the gradient at the boundary in terms of normal derivatives, this

can be written as

§I(u,8u) = J F,Sudx + f (fb&u * ?ESUh + ?EGunn + ...0)dx , (22)
A S

where the subscript n signifies a normal derivative, and 0’ Fl, F2’ etc., are
again newly defined operators. Equation (22) is the basis for a variational

principle, which is the starting point for one form of the finite element method.

DISCRETE REPRESENTATIONS OF CONTINUOUS FUNCTIONS
Given an arbitrary function of the form (2), the most direct way to
discretize the dependence on the variables x is to discretize x itself. The
simplest procedure is to choose a set of N arbitrary points x;(i = 1 to N), and
to specify an approximation to u at those points. We thus define N functions
of t,

u; () o= £(x;,t) , (23)

where the superscript * signifies an approximate representation. We will refer
to this as a Lagrange representation. In finite element terminology the points
x; are called nodes, and the functions u;(t) are sometimes called nodal
parameters. A more sophisticated procedure, requiring a smaller number of
points, is to specify also approximations to derivatives of u (which in the
most general case need not be consecutive). An example would be to specify

the set of first partial derivatives,
*
uy; () 8 £ (x;,t) . (24)
Such a representation will be called Hermite. Note that each point (node)

would now have associated with it more than one parameter. If u represents

a set of dependent variables, it is possible to discretize each by a different



set of discrete points. This is often done in practice.

An alternative procedure is to divide the domain of x into N discrete
volume elements Vi(i = 1 to N), and to specify an approximation to some
functional of u defined over Vi. A typical choice would be the integrated
average

*

T e Jf(x,t)dx ) (25)

A Vi
By analogy with a Hermite representation for point discretization, we can
define higher order representations for volume discretization by specifying
approximations to integrated higher moments of u. Volume discretization is
useful in the finite difference solution of equations written in divergence
(conservation) form. It is also necessary to define piecewise functional
approximations (see below). 1In finite element terminology, the volume elements
Vi are called finite elements.

Both types of discrete representations involve two degrees of freedom.
One is the arbitrariness in the location of the points x; (or volume elements
Vi). Any knowledge about the behavior of the function to be approximated can
be used to make a judicious choice. The other freedom is the choice of the
number and nature of parameters to specify at each point (or volume element).
Here the nature of the equations and the numerical scheme can be a determining
factor.

Discretization of Dependent Variables

The point discretization discussed above cannot represent integrals, or
derivatives of higher order than the order of the representation. Also, a
given representation gives no direct information at points other than the
discretization points. Therefore, in order to obtain a numerical solution,

one must also utilize (even if implicitly) an analytic representation of the

arbitrary function. Any analytic function can be represented as an infinite



series in a complete set of chosen functions (providing the series converges).
An obvious discretization is to choose N terms, and let the coefficients be
the discretization parameters. We will generalize this notion, and approximate
u by

wx,t) = glx; oy (8)] , (26)

vwhere g is any arbitrary, chosen function of x and the N parameters ci(i =1 to
N). The parameters c; are themselves functions of the undiscretized variables
t. If u stands for a set of dependent variables, each one can be represented
by a different function g, and the parameters ci(t) would be sets of
parameters.

A general representation which is nonlinear in the s cannot be easily
integrated, and differentiation can rapidly lead to very complex expressioms.
For this reason, it is normally used only in curve fitting, and to approximate
purely algebraic terms. An exception is the rational function approximation

Jum)ﬁ%ﬂﬂ*%ﬁﬂx+%ﬂﬂ¥*-~

27
e o) + ¢ (E)x + clz(t)xz .

whose derivative maintains a simple form. Since (27) has some advantages over
a polynomial, it has found uses in solving equations involving only local
operators. In general, though,one chooses a linear representation in the i
of the form
- N
u (x;t) »# 1L ci(t)¢i(x) ’ (28)
i=1

where the ¢i(x) are an arbitarily chosen set of linearly independent functionms,
sometimes referred to as basis functions. Since the basis functions should
be easily integrated and differentiated, they are often taken to be powers of
X, s0 that (28) becomes a polynomial in x. Other popular choices are

trigonometric and exponential functions. Representations (26) and (28) will

be referred to as functional approximations, or approximation by trial functions.



An important specialization of the linear representation (28) is to
*
combine it with the point discretization (23) by requiring that u equals the

*
nodal parameters uj at a set of N nodes xj, i.e.,

u (e) - glci (£)6; (<)) (29)
Since the ¢i(x) are linearly independent, one can always choose a set of xj for
which the matrix ¢i(xj) is non-singular, and thus solve for the ci(t) in terms
of the nodal parameters u;(t). The ci(t) are then said to be determined by
interpolatory constraints, and the approximation (28) is then called a
Lagrange interpolate to f(x,t) at the nodes xj. It can be represented

*
directly in terms of the uj(t) by introducing new basis functions E;(x),

called canonical basis functions, with the defining property

s
¢; (x5) = 855 > (30)

where Gij is the Kronecker delta. They can be easily obtained from the original

basis functions ¢i(x) by seeking the representation

N
o~
¢j(x) =.Z cji¢i(x). (31)
i=1
It follows from (30) and (31) that
N
121 cji¢i(xk) = ajk . (32)

Since ¢i(xk) is hon-singular, the coefficients cji are uniquely determined by
(32). The Lagrange interpolate to f(x,t) at the nodes X; can thus be expressed
succinctly as
* N * ~
u (x,t) = I u (t)e.(x). (33)
. i i
i=1
Canonical basis functions can also be defined for Hermite interpolation.

For a first order representation, defined by (23) and (24), one can introduce

~
the functions'gio(x) and ¢i1(x), satisfying



R

$;0cxj) =835 » Bypx(xy) = 0 (34)
and

r~ ~ns

¢11(xj) =0 ’ ¢i1X(xJ) = 6ij . (35)

These can be obtained in a manner analogous to that described above for Lagrange
canonical basis functions. The Hermite interpolate to f£(x,t) at the nodes x5

can then be written as
* * ~ * ~
u (x,t) 23 [ug (84 00 + u (£)6;, (0] , (36)
1

where the summation is over the total number of nodes. More general Hemmite

interpolates can be similarly formed.

Piecewise Functional Approximation
A single representation of the form (26) or (28) will be poor approxi-
mation for functions that undergo rapid variation in the x domain. It is
also difficult to construct such representations for domains with complex
boundaries when the x domain is multidimensional. It is then advantageous
to combine such representations with a volume discretization, and define a

separate representation, in each of M volume elements VJ, of the form

s . . . .
uJ(x,t) =g’ [x;c:.i(t)] (xev?, i=i to N%) .37
in the general case, or
. Nj . . .
*3 T od(t)e) v 38
u - (x,t) = . c; (®)g; (x)  (xeVv) (38)
1=

in the linear case, where Nj is the number of parameters in element Vj. Such
a representation is called a piecewise functional approximation, or approxi-
mation by piecewise trial functions. If the approximations u*j(x,t) are
independently chosen in each volume element, the resulting global representa-

tion would be discontinuous.



A representation with some degree of continuity requires matching
conditions at interelement boundaries, which effectively limits one to the
linear case (38). A practical method is to determine the cg(t) by interpo-
latory constraints. We thus superimpose on the vélume discretization an
independent point discretization defining a set of N nodes x; and associated
nodal parameters. Matching is simply obtained by locating some of the nodes
on interelement boundaries, where they are shared by more than one element.

The N7 nodes belonging to element V) therefore satisfy the inequality
M

T N> N. (39)
j=1

One can again choose the set of nodes X, so that ¢2(xk) is nonsingular

(xke Vj) in each element Vj. This condition will be sufficient to obtain

continuity for an arbitary set of ¢g(x) if x is a one-dimensional variable,

but continuity for multidimensional domains imposes restrictions on the set

¢i(x). To show this clearly, we first discuss the one-dimensional case, but

in a manner that can be immediately generalized to several dimensions.

One-dimensional Representation. Let x be one-dimensional, and consider a

piecewise representation (38) that is everywhere continuous, but whose
derivatives can be discontinuous &t interelement boundaries. It is therefore
sufficient to choose Lagrange interpolation, placing one node at each inter-
element boundary, and additional nodes in the interior of each Vj for which
Nj > 2. One can then again introduce new basis functions $;(x), called

Lagrange cardinal basis functions, satisfying
~

3 ~
for all i and k. In those elements v which do not contain X3 ¢i(x) must

interpolate to zero at all the element nodes. Since ¢i(xk) is assumed non-

10



singular, it follows that $;(x) = 0 in those elements. Thus $;(x) is non-

zero only over those elements containing nade X;, i.e., two adjoining elements
for a boundary node and a singie element for an interior node. One-dimensional
Lagrange cardinal basis functions for elements containing one interior node

are sketched in the top row of figure 1. Since the interelement boundaries
consist of one point at which an interpolating node is located, the functions

~
¢i(x) are continuous. Consequently, the global representation
* N * r
u (xst) = I u,(t) 4. (x) (41)
- i i
i=1
is also continuous. The localized nature of the $;(x) has important computa-

*
tional advantages. For example, integrals of products of u (x,t} over the

domain define matrix elements kij given by

kij = J¢i(x)¢j (x)dx . (42)

A

It is seen that ki' = 0 unless nodes i and j are contained in the same

J
element, so that kij is a sparse matrix. Similar results hold for integrals
*
of products of derivatives of u (x,t).
In finite element applications it is convenient to define for each
element VJ a set of element cardinal basis functions $g(x) satisfying
j = j
%’i(xk) =8, (X5,xEV) . (43)

If nne extends theifi(x) by defining them.to equal zero if x; or x lie outside

of VI, i.e.,
$g(x) =0 if x; or xeV? (44)
" .
one can then represent u (x,t) for each vl as
. N . . .
*3 OB ) = v 45
u “(x,t) = 121 u, ()33 (x) igvj u, ()33 (x) (45)

where the second form results from (44). It also follows from (44) that

11



wie) =0 if  xgVd . (46)

Using (43) through (46), one shows immediately that global and element

representations are related by

- M
9; 0 = IF “47)
j=1
* M *3
and u (xt) = I oud(x,t), (48)
j=1

In order for (47) and (48) to be valid at interelement boundaries, the volume
elements Vj must be considered disjoint, and to butt together at the
boundaries. Element basis functions $i{x) are sketched in the bottom row
of figure 1,

Another useful computational device is to define for each element Vj a

set of local coordinates xJ, each related to the global coordinates x through

J

transformations x = x(xJ) and < = xJ(x). (A special case is x7 = x).

The nodes contained in each element V? can then be designated as x? , where
gn i

i is a local node number (i = 1 to Nj), completely independent of its global
node number. Thus there exist mapping relations which map local node numbers
into global node numbers, and vice versa. The local nodal parameters
attached to a local node xg are designated as u;j(t). The element cardinal
basis function corresponding to local node xg would then be written as

.. * .
ﬂg(xj), and the representation of u (x,t) in v’ becomes
J

wIed, e = : wl ¥ oh . (49)
i=1
The use of local coordinates can result in functions $2(xj) that are easy to
manipulate analytically. A major advantage results if all the volume
elements are geometrically similar in x space (which is trivially so in

one dimension), since then they can all be described by the identical local

coordinates. If the same set of basis functions ¢g(x1) is chosen for each

12



element, and the nodes xi are defined at geometrically similar locations,
the element cardinal basis functions $g(xj) will also be the same for all
elements. It is thus possible to create a single subroutine, valid for all
elements, in order to perform calculations for a single element. Of course,
in summing the results to obtain a global solution, the coordinate trans-
formations and node number mappings must be invoked.

If continuity of derivatives is required for the piecewise representa-
tion, one must use Hermite interpolation. It is only necessary to define
derivatives at boundary nodes, and not at interior nodes. In fact, in
most applications of piecewise Hermite interpolation, nodes are only
defined at interelement boundaries. The extension of this subsection to
piecewise Hermite interpolation follows the general manner indicated by (34)

through (36) for the case of a single, global Hermite interpolation.

Tensor Products

A piecewise representation can be easily obtained in several dimensions
if the global boundaries of the domain lie along the coordinate surfaces.
One can then choose volume elements and nodes to lie along coordinate
surfaces, and construct cardinal basis functions which are products of one-
dimensional cardinal basis functions known as tensor products. We indicate
the process for two dimensions, departing from our notational convention,
by using x and y to represent the two (not necessarily Cartesian)}
coordinates.

Let Vk, X4 and $;(x) be one-dimensional volume elements, global nodes,
and Lagrange cardinal basis functions along the x coordinate. Similarly,
define VZ, yj, and $3(y) to be one-dimensional volume elements, global nodes,
and Lagrange cardinal basis functions along the y coordinate. These define
two-dimensional volume elements designated as Vkl, and the double index node

number ij for the node located at x; and yj. The function

13



~ _ e ~r
¢ij(x,y) = ¢i(XJ¢j(y) (50)

has the property

P d
¢ij(xm,yn) = GimGjn s : (51)

and is therefore a two-dimensional Lagrange cardinal basis function.

Consequently, N N
X Y % ~
u*(x,y,t) ¢ £ I u,.(t)e..(x,y) (52)
i=p jm1 MY
where
*
uij(t) = f(xi,yi,t) (i=1 to Nx’ j=1 to Ny) . (53)

Representation (52) is everywhere continuous, and can be extended to higher

dimensions and to the case of Hermite interpolation.

General Multidimensional Representation

If the global boundaries of a multidimensional domain are too complex to
allow a tensor product piecewise representation, one must use volume elements
of a more general shape. All the results of the subsection on the one-
dimensional representation can be immediately generalized, with the exception
of the continuity conditions. If X is an interior node located in element
Vj, we require that 6;(x) (oxr ag(x)) equals zero on the boundaries of Vj.

But this is only guaranteed at the boundary nodes of Vj. Thus the
combination of basis functions ¢i(x) in (38) and nodes X cannot be
arbitrarily chosen, but must be such as to yield gi(x) = 0 on the boundary
for interior nodes of Vj. If X; lies on one or more boundaries of Vj, then
we require that $2(x) = $§(x) on each boundary for all other volume elements
Vk sharing that boundary. In addition we still require that $i(x) = 0 on
the boundaries of Vj that do not contain X; . Piecewise Hermite interpolation
puts even more stringent requirements on the ¢g(x).

Up to this time, the shape of the volume elements Vj and the nature of

the basis functions ¢;(x) have been considered arbitrary. The above-mentioned

14



continuity requirements effectively limit one to triangles (or tetrahedrons)
in x space (which could be curvilinear in physical space), and polynomials
in x for the ¢g(x). It also puts restrictions on the location of the nodes
x;. The simplest case is Lagrange interpolation with linear basis functions
¢i(x), for which one only requires nodes at the vertices of the triangles
(or tetrahedrons). The finite element literature is replete with various
combinations of nodes X; and corresponding cardinal basis functions
(usually called shape functions)'$g(x), for both triangles and tetrahedrons,
and for Lagrange and Hermite interpolation.

The polynominal nature of the ¢{(x) also allows one to estimate the
errors in u*(x), when f(x) is assumed exact at the nodes (so that (23) is
an exact equality). (We suppress the dependence on t for the moment.) Such
estimates are derived in reference 1, where it is shown that the error bound
for Lagrange interpolation over a triangle is inversely proportional to the
sine of the smallest angle. This would rule out extremely acute triangles.
Actually, the author has shown (ref. 2) that the sine of the largest angle
enters into the error bound, ruling out only extremely obtuse triangles.
For the simple linear case, the author obtained least upper bounds for the

errors. Let

Mo E ] oy (54)
be the maximum absolute value of the second directional derivative of f in
any direction, at any point in the triangle. If © and h are the maximum
angle and side of the triangle, then the results are

lu”-£| i“hTz (55)
and |- | < mopis (56)

* *
where | (u -f)x] is the magnitude of the gradient of u -f.



Since arbitrary, curved global boundaries cannot be easily fit by a
global curvilinear coordinate, one is faced with the need to use curvilinear
elements in x space. This can be done if one can find transformations x(&)
which transform the curvilinear elements in x space into straight sided
"parent" elements in £ space. The representation of u over the curvilinear
element is only approximate, being accurete only at the nodes. It is there-
fore sufficient to treat the transformations x(£) in the same manner. This is
the basis for the isoparametric transformations developed by Irons (ref. 3).
Let xj = x be the local coordinates for the curvilinear element, and xg be a
set of local nodes chosen on the boundary of (and possibly within) the
element. (There must be at least 3 nodes per side and at least 4 nodes per
face to define curved boundaries.) In the transformed & plane, let Ej,E g,
and'$g(£j) be local coordinates, local nodes, and element cardinal basis
functions for the corresponding 'parent'" element. Then the isoparametric

transformation has the approximate representation,

N

*3 gl 3% el
xIEh =t Heeh . (57)

i=1
(In some cases it is practical to use a lower (higher) number of nodes and order
of basis function to represent the geometric transformation than are used to

s

represent u J(x) over the element. Such transformations are then called sub
(super) parametric.) Using (57) and its derivatives, integrals over element

v/ in x space can be transformed into integrals over the ''parent” element in £

space.

SEIines

The piecewise representations discussed so far involved only interpolatory
constraints to determine the cift) in (38). 1If additional smoothness constaints

are imposed by matching higher derivatives (than those prescribed by interpola-
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tion) at boundary nodes, the representations are called splines. The additional
continuity requirements on the ¢g(x) are so great for general multidimensional
elements as to make such spliné representations totally impractical. We are
thus restricted to one-dimensional splines (and their tensor product generaliza-
tion to higher dimensions). In practice, splines are further limited to

volume elements with Lagrange interpolatory nodes only at the two ends of each
element. Thus for a division of the one-dimensional x space into M volume
elements, the total number of nodes N =M + 1. Smoothness constraints are
applied at the M - 1 nodes that lie in the interior of the global domain, and

are

in number, where we recall that Nj is the number of parameters in element Vj.

In the usual case where N is the same for all Vj, one can specify exactly

Nj - 2.smoothness constraints at each of the (M - 1) interior nodes, leaving
exactly Nj - 2 conditions to be specified at the two ends of the global domain.
If there are no additional end conditions on the function f(x) to be represented,
the N - 2 conditions must be arbitrarily specified and apportioned at the two
ends. Such splines are therefore not unique. It .is also clear that an even
number for Nj will prevent a bias towards one end. While splines can be
constructed for arbitrary ¢i(x), in most applications they are limited to poly-
nomials.

One can again construct cardinal basis functions ﬁg(x), and employ represen-
tation (41). Since the smoothness constraints couple the elements together, the
cardinal basis functions are not at all localized, but extend over the global
domain., They are thus inconvenient for computational purposes. There are two
approaches that are used. In one, the original basis ¢i(x) is used, and the

*

derivatives u_. , u

i , etc., are introduced as additional unknowns. The

*
xxi
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interpblation and matching conditions enable one to solve for these derivatives
in terms of the u;, by inverting banded matrices. The other procedure, valid
for equal intervals, is to introduce a new basis ¢?(x), known as B splines,
which possess the smoothness property, but do not have the cardinal property

¢f(xj) = Gi. . The B splines are non-zero only over N elements, and thus

J
have a localized nature. The coefficients of B spline expansions can again

be obtained in terms of the u; by inverting banded matrices. A popular choice
for polynomial splines is piecewise cubic (Nj = 4), which leads to easily
invertible tridiagonal matrices. An elementary discussion of splines is found
in reference 1.

Our discussion of functional approximations was aimed at their application
in numerical solutions of operator equations. Their obvious role is to obtain
expressions for derivatives and integrals in terms of nodal parameters, and
to evaluate functions at points other than nodes. There are several other
applications, which should be briefly mentioned.

One application is to use piecewise functional approximations to obtain
approximate analytic solutions of certain differential equations. In this
method, known variable coefficients are replaced by simpler piecewise representa-
tions in terms of known nodal parameters, so that the resulting equations
possess an analytic solution in each element. The unknown solution coefficients
are obtained by matching the solutions and their derivatives at interelement
boundaries and applying boundary conditions at the global boundaries. The
solution of the differential equations is thus reduced to that of an algebraic
system for the coefficients. Further details are found in the works of Gordon
(ref. 4) and Canosa and de Oliveira (ref. 5).

Another important area of application is the representation of complex
surfaces in physical space. The independent variables x are the two parameters

defining parametric curves on the surface, while u stands for the position
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vector. If the surface is very complex, one needs a piecewise representation,
dividing the surface into patches. One class of such representation uses tensor
products, interpolating through data given at the cofners of the patches.
Examples are programs developed at McDonnell Douglas (ref. 6), using piecewise
cubic Hermite polynomials, and the work of Riesenfeld (ref. 7) employing B
splines. In another class of representation, the curves defining the boundary
of the patch are analytically prescribed, and one seeks what are referred to as
blended interpolations for points inside the patch. Examples are the work of
Coons (ref. 8) using Hermite polynomials, and Gordon (ref. 9) using splines.
All of these approximate surface representations can play an important role in
generating finite difference and finite element grids and formulating surface
boundary conditions, for the solution of flows past complex boundaries.

In closing we list the various degrees of freedom in a functional approx-
imation. One is the choice of single versus piecewise representation, and
the nature, size, and location of volume elements in the latter instance.
Another is the functional form, which involves a choice of basis functions in
the linear case. The number, location, and nature of interpolating nodes
is another degree of freedom. Finally, for piecewise representations, there
is the choice of using additional smoothness constraints to define splines.
While continuity and convergence criteria make some of these choices inter-
dependent, it still allows for large degree of flexibility in constructing

functional approximations.

FORMUIATION OF THE EXACT EQUATIONS
There are two mathematically equivalent ways to formulate the equations
describing continuous fields. In the direct approach, the equations and
boundary conditions of the problem are given. For certain classes of
equations, an indirect variational formulation is possible, which incorporates

some of the boundary conditions. A finite difference numberical solution is
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usually based on the direct formulation, while the variational formulation is
the starting point for one form of the finite element method. These two
formulations are briefly discussed below, where x will stand for the complete

set of independent variables.

Direct Formulation
The normal way to formulate a field problem is to specify that u(x) is a

solution of an operator equation (s)

G(u) =0 . (58)
A complete specification requires subsidiary equations valid on subspaces of
x called boundaries. If Si represents the ith boundary subspace, the
subsidiary equations
Bi(u) =0, xest (59)
are called the boundary conditions on Si. The boundary st can be prescribed
or free, i.e., implicitly defined in terms of another operator equation. In
many problems Si is defined in the limit as x approaches infinity. If
S = ; Si defines a closed subspace, then (58) and (59) define a boundary value
probiem. If x is one-dimensional, one can also have an initial value problem,
where all the boundary conditions are specified at only one boundary. For
multidimensional x, a mixed type of initial boundary value problem is possible,
which is an initial value problem with respect to one (time-like) independent
variable, and a boundary value problem in the subspace defined by the other
independent variables.
Two other points should be made with respect to a problem formulation.
In certain problems, internal boundaries (such as shocks or slip surfaces) can
occur, where the solution is discontinuous. The conditions at these surfaces

are not boundary conditions in the sense used here, since they are actually

limiting forms of the field equations (58). The other point refers to certain
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classes of boundary value problems, in which a well behaved solution only
exists for specific values of certain parameters, called eigenvalues. In
eigenvalue problems, the determination of the eigenvalues can be an important,

if not the principal objective.

Variational Formulation
An indirect variational formulation exists for boundary value problems
in which the operator G(u) (58) is self adjoint. Then G(u) is a Fréchet

derivative of another operator F(u) , i.e.,
G=F_ . (60)

The operator F(u) defines the integral functional I(u) given by (20), whose
Fréchet differential is given by (22). A variational statement of the original
problem states that

8I(u,8u) = 0 (61)

for all variations Su. This immediately implies (58), the original operator
equation, which is then referred to as the Euler equation. But it also
requires the boundary conditions (59) on each Si to be such that the boundary
integral in (22) is equal to zero. If only the first term exists, the require-
ment is that either Su is zero, i.e., u is prescribed on the boundary, or

Fo is zero. Thus (59) would be limited to

Bl = u -6t (62a)

?o () , (62b)

or B" (u)
where ¢1(x) is a prescribed function of x on the boundary s'. 1If the second
term also exists in the boundary integral in (22), we additionally require that
either u, is prescribed, or ?& is zero, etc. The conditions u, u., etc.,
prescribed are called the principal boundary conditions, while the alternate

conditions ?; =0, ?& = 0, etc., are called the natural boundary conditionms.
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Thus, corresponding to each term in the boundary integral in (22), a boundary
condition (59) must exist on each Si, which is either the principal condition,
or the natural condition detemmined implicitly by (58). The variational
statement (61) is thus subject to the constraints of the principal conditions,
but automatically incorporates the natural conditionms.

There are problems for which G(u) is self adjoint, which involve boundary
conditions (59) that are neither principal nor natural, as defined above. It
is usually possible to extend the variational principle to include those
cases. Let

Hl(u) = hl(x,u,un,unn, cee) xeS* (63)

be a local operator defined on the boundary subspace s'. The Fréchet

differential can be written as

i i i i i
H (u,fu) = Hoéu + H;Gun + Hédunn + ... , XS (64)
Then the extended integral functional
I(w) = J F(u)dx + Z J H' (u)dx (65)
i /.
v st

has the Fréchet differential

SI(u, u) = J F Sudx + E J [F + H;)su + (Fy*H])ou + (F2+H;)sunn + ... ]dx .

v st (66)

The extended variational principle (61) now possesses extended natural boundary
conditions ?; + Hi =0, Fi + Hi = 0 , etc. For most cases, one can find
operators Hi(u) such that boundary conditions (59) that are not principal
conditions can be made to be extended natural conditions as defined by the
extended functional (65). One can also show that several different choices
for Hi(u) are possible in some situationms.

When (58) or (59) involve several equations it is possible to handle some

of them using Lagrange multipliers. Specifically, if (58) or (59) are
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replaced by

G(u)

0 and Go(u) =0 67

and Bt (u)

n
o
»
m
7]

-

(68)

i
0 and Bo(u)

where G(u) is the Fréchet derivative of F(u), the variational principle can

then be stated in terms of the functional

1w = [ P s e,@lax s | e v ulsiwile (69)
1
v S

i
where the functions A(x) and ui(x) are parameters to be varied independently.
G(u) = 0 and Go(u) = 0 are the Euler equations corresponding to the variations
of Su and &), respectively. Similarly, some of the equations Bi(u) = 0, and
Bi(u) = 0, are the natural conditions corresponding to the variation of Su,
Gun, «.., and 6A on theboundary Si. Sometimes the roles of G(u) and Go(u) can
be reversed, leading to alternate variational principles for the same problem.
The variational formulations discussed so far have been restricted to
prescribed boundaries Si. We indicate the modification due to a free boundary

by considering the case where the boundary s' and boundary condition Bl(u)

are determined by the solution of
g [ux) x] =0, (70)

which implicitly defines Si(u) and V(u). The functional I(u) is now written
as
I(u) = J F(u)dx , 71)
V(u)
and its Fréchet differential is
81 (u, 6u) =J 8F (u, 6u)dx + I J F(u)éntdx , (72)
v T g
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where 6n" is the amount 5 moves normal to itself due to the variation Su(x),
and V and 3" are the domain and boundary before u is varied. If Gn(Si)
represents the variation Su at the fixed boundary §i, one can show from (70)

that i
i - gu5u(5 )

dn” = . (73)

i i
En * By Yy
Combining (72) and (73), we find that the free boundary modifies the natural

boundary condition to read i

Fgu

I S 4
En * Byl

The variational formulation has two advantages over the direct formulation.
The operator F(u) is a lower order operator than G(u), permitting a functional
approximation with a lower degree of continuity. Also, since the variational
formulation has the natural boundary conditions built into it, it therefore
has fewer boundary conditions to satisfy than the direct formulation. It has
the disadvantage of being indirect, and only existing for a certain class of
problems.

We are now ready to examine how the two types of discretizations discussed
in the previous section are used to obtain approximate solutions to continuous

field problems, starting from either of the two formulations discussed above.

FINITE DIFFERENCE METHODS
Any approximate method of solving a continuous field problem whose starting
point is the discretization of some of the independent variables will be termed
a finite difference method. The most common procedure employs point discretiza-
tion at N nodes x,, with their associated unknown nodal parameters which can be
functions of the variables t. This lends itself naturally to the direct
formulation, by evaluating (58) approximately at N evaluation points E}, which

do not necessarily coincide with the X; . (Recall that if u stands for several
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dependent variables, each may be discretized by a different set of nodes.) The
operator G(u) involves differential operators in x which must be approximated
by finite difference operators in terms of the unknown nodal parameters. This
has two consequences. In order to obtain simple difference approximations,

it is highly desirable to choose the nodes to lie along coordinate surfaces if
X is multidimensional. The other point refers to the nature of the functional
approximation which is implied by the difference approximation. In the
previous section, functional approximations were defined over global regions.
Yet in initial value and initial boundary value problems, the solution along
the time-like coordinate is only known up to the point presently reached in the
calculation. Even in boundary value problems, a difference approximation based
on a global functional approximation would be overly complex, and result in the
need to invert very dense matrices. For these reasons, traditional finite
difference approximations are based on functional approximations that interpolate
data at nodes X5 limited to a neighborhood of the evaluation point i}. We
discuss such local difference approximataons first, and subsequently examine

some recent difference approximations based on global functional approximations.

Methods Based on Local Functional Approximations

The first observation one should make is that local functional approxima-
tions used at neighboring evaluation points are in general incompatible. This
can be simply seen by considering second order Lagrange polynomial interpolations
in one dimensions for Ei = X;. Using symmetrically placed points (leading to
central difference formulas), the local functional approximation at E& is a
parabola through the points u;_l, u; , and u;+1 , while that at §E+1 is a
*

142 ° These two approximations describe two

* *
parabola through us o, Uil and u
different curves in their region of overlap between x; and X510 Once the
*
approximate solution for the uj is obtained, it is not clear which of the

*
curves to use in order to interpolate for the values of u between nodes
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(presumably a weighted average would give the best results). Actually, the

question is rather academic, since the difference in the values given by the
two approximations should be no greater than the errors in the approximations
¥

uj.

By contrast, the piecewise functional approximations of the previous
section, although localized in nature, are disjoint functions that butt together
with no regions of overlap. They therefore give unambiguous values for any
quantity (except derivatives at interelement boundaries of an order higher than
that demanded by the smoothness of the approximation). Yet it is this very
ambiguity in the local functional approximation which gives a local finite
difference approximation its flexibility and power. If G(u) is quasi-linear,
the local value of u determines the nature of the operator, which in tern
determines the optimum type of difference approximation. Thus the nature of
the local approximation can be determined at each evaluation point by the
local solution. This is the basis for upwind differencing and the type
differencing of transonic flows. Even at the same evaluation point, different
terms in the operator G(u) can be approximated separately. The nature of the
approximation can be made to change during an iterative solution, or a marching
solution with respect to another independent variable. ADI methods and
splitting or factorization techniques are applications of this degree of
flexibility.

The local functional approximation also has to be modified for evaluation
points i}, near or at global boundaries, in order to satisfy boundary conditions.
This can be done most readily if the global boundary is a coordinate surface.
For a more general boundary which does not conform to the coordinate system,
the approximation can become quite involved, if one wants to maintain the same

level of accuracy. For this reason, a nonconforming boundary should be

avoided if possible.
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Lagrange Representation

The simplest types of finite difference formulas for derivative operators
are based on Lagrange polynomial interpolation. This is the basis for the
standard forward, backward and central difference formulas for partial
derivatives of any order, and of any.order of accuracy. Lagrange interpolation
can also be used to express u; in terms of neighboring u;(j # i){ assuming
that u; is unknown. Such a device is used in some numerical algorithms.

In solutions involving time-like coordinates, final values of derivatives
are already known at points previously computed. In boundary value problems,
one needs to compute the same derivative at all nodal points. This suggests

the use of Hermite interpolation to provide more accurate difference formulas

without increasing storage requirements.

Hermite Representation

An example of a Hermite finite difference formula in one dimension is

* * * * %*
derived from the specification of u, ;, u (i-l)’ui » Uy, and u which

XX i xx (i+1)?
define a unique quartic polynomial. (This is an example of a Hermite representa-
*
tion with nonconsecutive derivatives.) Evaluating the second derivative of u (x)
at EA = X (for equal spatial intervals h), one obtains

2

* 2* *
h ) = 12(ui_1 + U+ ui+1) s (75)

* * *
(uxx(i—l) + 10 Uxi ¥ uxx(i+1)
which is the standard Hermite centered finite difference formula (ref. 10). The

* . .
solution for u, is obtained by tridiagonal inversion. Other Hermite differ-

xi
ence formulas involving any partial derivatives can be similarly obtained.
An important application of Hermite interpolation is the construction of

difference formulas for initial value problems of the form
G(u) = u, - f(x,u) =0, (76)

where x is one-dimensional. If the solution is known up to the point x,, the

* *
values of uj and uxj for all j < i are available to construct a variety of
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local Hermite interpolates from which one can explicitly predict u;+1 . A more
accurate but implicit difference formula is obtained by including u;(i+1) in
the representation. Such a formula is normally used as a corrector in an
iterative solution, where a predictor formula and (76) were first used to
calculate a first approximation for u;(i+1).

Another approach to the numerical solution of initial value problems
employs higher derivatives Uy s Uyex? etc., which can be obtained in terms of
lower derivatives by differentiating (76). One can then construct the Taylor

series

(x - x.)2 + ... (77)

* * * 1
xX) =u, + (X - X)) + =
u (0 1 ux1( 1) i

7 Uxxi
If the series is truncated after a finite number of terms, the result can be
looked at as a local Hermite interpolate through the single point X Thus any
step in a finite difference algorithm for the solution of an initial value
problem can be obtained from a local Hermite interpolation (although the local
functional approximation corresponding to a given algorithm is not necessarily
unique).

Different representations can be used in obtaining difference formﬁlas for
initial boundary value problems. Let t be the time-like variable, and assume
that by differentiating (58) one can express Ups Upys etc., as functions of
u., u .., etc., where x represents the remaining independent variables. If
one first discretizes x space, and defines Lagrange parameters uI(t) at the
nodes X;, one can then use a local functional approximation and Lagrange inter-
polation to evaluate Uy Uyrs etc., and obtain expressions for du;/dt, dzu;/dtz,
etc. The latter can then be used to define a Hermite discretization of the t
coordinate, and the solution can be advanced in t, using (77) (with x replaced
by t), which represents Hermite interpolation through a single point in t space.

In summary, any standard finite difference algorithm for solving a set of

partial differential operator equations can be derived by applying sequences of
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local functional approximations, and interpolating parameters of Lagrange or
Hermite representations. The number of points and the order of interpolation
determine the accuracy of the approximation (i.e., truncation errors). This
still leaves freedom in the choice of points and parameters, and nature of the
functional approximations. These can all be optimized to provide the best

stability properties for the numerical solution.

Methods Based on Global -Functional Approximations
We turn now to finite difference methods based on global functional
approximations, limiting ourselves to Lagrange discretization at nodes x, and
the case E& = X;. Thus the nodal parameters are u;(t), where t represents the
remaining undiscretized variables. Partial derivatives are special examples of

linear operators obeying the property

L(au + bv) = aL(u) + bL(v) , (78)
where u and v are two arbitrary functions, and a and b are constants. Thus a

local operator G(u) can be written generally as
G() = g[x.t,u, Ltu: Lxll, LX(L‘(‘.L?] » (79)

where the subscripts indicate the variables on which the linear operator L
operates, and g is an arbitrary function of the six arguments. For any set of
linearly independent basis functions ¢i(x) the linear representation (28) can
be expressed in terms of canonical basis functions 3;(x) and the nodal

parameters uf(t) as
i
* N * ~
u (x,t) =t_21 ui(t) ¢i(x). (33)
1=

The two basis functions are related by defining matrix elements aij as

aij = ¢1(XJ) ’ (80)
and the inverse matrix with elements bij satisfying

b..a. (81)

1535k = Sik -
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Then

S
~
»”
~
fl

bij¢j(x) . (82)

If we define

¥ &) = L6, (0T, (83)

it follows from (33), (82), and (83) that

* N * —~
Lo (o)) = 2w %0, (84)
where
% () = byxs () = L[ (0] . (85)

For linear operators operating on t we obtain
* N * ~
Lt[u (x,t)] = i§1 Lt[ui(t)]¢i(x) . (86)

Evaluating (79) at the evaluation points Eg = xj , we obtain the following sets
*

of equations for the parameters ui(t):

N N

z

u % ), E L up(9)IF; ()1 = 0. (87)

g[xj,t:uj (t), Lt[uj (t)]: io1

i=1

For an arbitrary set of ¢i(x), the matrices aij are dense, and their inversion
is inefficient. The practical use of (87) requires restrictions on the
functions ¢i(x). Three such choices will be described, each leading to a
practical finite difference method in x space. An arbitrary, independent
method can be used in each case to perform the numerical solution in the t

space.

Finite Fourier Series

If x is one-dimensional, with periodic boundary conditions, a convenient

choice is

e21Tikx/L (88)

>

b (x) =

where L is the length of the region, and i = ¥~I  The representation is the
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finite Fourier series

K .
ux,t) = T g ()P (89)
k=-K

where N = 2K+1., If xj are chosen to be equally spaced, the transformation
between u;(t) and the ¢; (t) (corresponding to matrix multiplication by 3 5 and
bij) is accomplished efficiently by using fast Fourier transforms (ref. 11).
For linear differential operators, the functions xi(x) as defined by (83) are
just proportional to the ¢i(x), leading to further simplifications. Finite
difference methods using (89) are referred to as pseudospectral (ref. 12) or
"accurate space derivative" (ref. 13) methods. They can be extended to higher
dimensions using tensor products.

A Fourier series can be reformulated as an expansion in Chebycheff

polynomials, based on the identity
n k
cos nx = % a, COs X .
k=0
The nodes X; are no longer equally spaced in the new x domain, but are located
at the roots of the Nth order Chebycheff polynomial. Thus the basis for the

accuracy of such a difference scheme is the same one that underlies Gaussian

quadrature.

Differential Quadrature

The ideas behind the polynomial formulation of a Fourier method can be
generalized to any set of orthogonal polynomials, with the nodes Xy again
chosen at the roots of the Nth order polynomial. The matrix elements‘i}(x&)
are easily calculated, using the properties of the orthogonal polynomials. The

method, known as differential quadrature, is described in reference 14.

Spline Differencing

A third approach using global functional approximations is to use piecewise

approximations, with nodes and evaluation points located on interelement
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boundaries. In one dimension, a spline approximation is necessary, with
smoothness constraints determined by the highest derivative present in the
operator L. As indicated previously, cardinal basis functions are not
practical, and the original basis functions are employed, with the derivatives
at the interelement boundaries as additional unknowns. These derivatives are
related to the nodal parameters through banded matrix relations, rather than
explicitly as in (84). For a cubic polynomial spline, the relation for

first derivatives is identical to the one given by Hermite differencing. The

second derivative relation differs from the Hermite formula, with (75) replaced

by
* *

*
xx (i-1) * 8uxxi *2u

h? = 12(u, , + 2u, + u, 0
(2u xx(ie1)) = 12005 g * 2up v uy ) (90)

1

Sequences of one-dimensional differencing using ADI methods and splitting, are
used in multidimensional problems. Further details on the use of spline
differencing in the numerical solutions of partial differential equations are

found in reference 15.

Finite Volume Differencing
Finite difference equations based on volume discretizations are often
employed when the operator equation (58) can be written in divergence (or
conservative) form

N2 Fw]=o. (91)

Here F(u) is a locator operator on u. Let x be discretized into N volume
elements Vl, each of which is enclosed by a set of boundaries sy, 1f on
is integrated over element Vl, and the divergence theorem (4) is applied, the

result can be written as

og 1

u

3 *tx IS
LA |

R (92)

2

ks Y
where U © is defined by (25), and F 1J is defined as
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R O J F(u') ndx . (93)

The unknown parameters are the ﬁji, and a functional approximation is required
to express the average normal fluxes ?ij in terms of these parameters. This
can be most easily demonstrated for one-dimensional differencing. Letting the
subscript k refer to a global numbering of interelement boundaries (which are
nodes in one dimension), a local functional approximation for element Vi can

be written as

Vi = 1w T . (94)
ey Uk %

The notation k(i) indicates a particular choice of nodes k in the neighborhood
of element Vi, and‘$i(x) is a local canonical basis function. The latter is not
to be confused with the element cardinal basis functions defined by (43) and
(44). The nodes k(i) need not be contained in Vi, and'ﬁi(x) # 0 for those

nodes. Integrating (94) over element Vl, one obtains

.z wd, (95)
k(i) Xk :
where .
o J‘&;(x)dx : (96)
v

The u; can then be expressed in terms of the Gji by inverting a sparse matrix
in a manner similar to that which exists for Hermite differencing.

The determination of the fij, when F(u) involves differential operators,
again creates ambiguities resulting from the incompatibility of local
functional approximations at neighboring elements Vi. Once the u; are
obtained by inverting (95), the local representation u*i(x) can be obtained
from (94). One can then determine F(u*i), and use (93) to calculate the

temms F'J for the two boundaries along the x direction. If this procedure is
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followed, the value of ?ij for a given boundary separating two elements will
be independently calculated for each of the elements. Yet global conservation,
obtained by summing (92) over all the elements, requires that the two ?ij be
equal in magnitude and opposite in sign. One must therefore choose a single,
unambiguous ?ij for each boundary, using some averaging or biasing, If t is
a time-like variable, the bias can be alternated with each marching step.
Note that at global boundaries exact prescribed values of ?ij can be imposed.
If x is multidimensional, the above one-dimensional differencing can be
used sequentially along several coordinates, using splitting techniques. A
particular advantage of finite volume differencing is that the original
equation (58) has been integrated, so that the operator F(u) involves lower
order differential operators than G(u). Therefore a cruder local approximation
(94) can be employed. The possibility of alternating the bias when t is time-
like, allows even still cruder approximation for each marching step (ref. 16).
The conservative, or integral nature of the numerical solution also guarantees
that jump conditions across discontinuities are automatically satisfied, even

if the discontinuities are smeared out by the calculation.

Methods Based on a Variational Formulation
We conclude this section by describing briefly a finite difference
approach based on the variational formulation (61) and (65). The starting
point is the same as for the direct formulation. One first chooses a set
of nodes xj and evaluation points 25 inside the domain V and on the boundaries
Si, the type of nodal representation, and the nature of the functional approxi-
mation. These are then used to evaluate the operators F(u*) and Hi(u*) at
the evaluation points E}, as functions of the nodal parameters. The next step

is to approximate the integral functional I(u) in terms of the discretized

F(u) and Hi(u). This is done by appropriate quadrature formulas of the form
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HJ)#?% Ww3%+§ @[ﬁmﬁh. (97

z
j k
Here wj and wi are weight coefficients defined implicitly by some functional
approximations of the respective integrands. (These functional approximations
can in general be independent of those used in obtaining [F(u*)]j and
[Hi(u*)]j in terms of the nodal parameters.) The summations in j and k are
over the evaluation points contained in the domain V and boundary Si,
respectively. In many cases one simply chooses wj = wi = 1.

With I(u*) expressed as a function of the nodal parameters u; through

(97) (assuming Lagrange representation for the moment), the variational
principle (61) simply becomes

3l _ o0, j=1toN, (98)

ou,
J

providing N equations for the N unknown parameters. This method is sometimes
called the Euler method, and is described further in reference 17. Actually,
the method bears a striking resemblence to methods based on functional
approximations, being somewhat hybrid in nature, with one foot in each camp.
It is therefore a good point to leave finite difference methods, and turn our

attention to functional approximation methods.

FUNCTIONAL APPROXIMATION METHODS

Any approximate method of solving a continuous field problem whose
starting point is the discretization of the dependent variables will be
termed a functional approximation method. We will describe such methods in
terms of the general functional representation (26), applying the approxima-
tion first to a variational formulation, and subsequently to the direct
formulation. The results will then be specialized to linear and piecewise
representations, the latter giving what we normally called finite element

methods.
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Variational Formulation
The functional approximation (26) lends itself naturally to the varia-
tional formulation (61) and (65). The method will be first described for the
case when the dependence on all the variables will be approximated so that
the functions <, in (26) become constant, and there is no variable t. This
case is usually called the Ritz or Rayleigh-Ritz method. The function
g(X;Cj) must first be chosen so as to satisfy the principal boundary

conditions, Substitution of (26) into (65) yields

I(cj) -*-%j F[g(x;cj)]dx + >13 J Hi[g(X;cj)]dx . (99)

\ st H

This restricts g(x;cj) further to functions with sufficient continuity for 5
the integrals to exist. The variational principle (61), applied to all varia-

tions ch, gives the set of equations

£ =0 j=1toN (100)

for the N parameters cj.
The method can be extended to functional approximations (26), where cj
are now functions of undiscretized variables t. It is then referred to as

the Kantorovich method. The integral functional (65) must now be written as

I =J J F(udxdt + I f J H (w)dxdt (101)
i J. ),
T V(t) s, $7(t)

where T and S; refer to the subdomain of variables t, and their boundaries.

Substitution of (26) into (101) yields

I[cj(t)] ;sf { J F{g[x;cj(t)]}dx]dt +Z
i
T V() S

J [ J Hi{g[x;cj(t)]}dx]dt, (102)

1

1
. ST
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Equation (102) is now considered an integral functional over t space involving
the unknown functions cj(t). The variational principle (61) then states that
the Fréchet differential

I . .) =0
I (cJ ,GcJ) s (103)

which results in the set of equations and boundary conditions necessary to
determine the set of unknown functions cj(t).

As indicated before, the operator F(u) involves lower order differential
operators than G(u), permitting a functional approximation with lower order of
smoothness. The approximation also need not satisfy the natural boundary
conditions, since they are automatically satisfied in the variational process
(to the same degree that the equation G(u) = 0 is satisfied). For these
reasons a Ritz or Kantorovich method is much to be preferred. Unfortunately,
it is limited to boundary value problems in which G(u) is self-adjoint. There
have therefore been many attempts to create so-called 'variational" principles
designed to solve problems for which a true varfiational principle does not
exist. These new principles may be classed as adjoint variational, quasi-
variational, or restricted variational. Finlayson and Scriven (ref. 18) have
shown that they are all either based on a direct formulation in disguise, or
offer no real advantage over a method based on a direct formulation. There
is therefore no further need to consider any of these formulations.

A new method which makes use of a variational formulation in an iterative
procedure is the pseudo-functional method of Norrie and deVries (ref. 19).

It is designed for problems which come close to admitting a variational

principle. More precisely, assume that (58) is given by
G(u) = Fu(u) + Go(u) =0, (104)

and the boundary conditions (59) that are not principal conditions can be

written as
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Bl(u) = FJ. () + B;'(u) =0, xes', j = 0,1,etc., (105)

where the operators ?}(u) are related to F(u) as in (20) and (22). If the
terms Go(u) and B;(u) are sufficiently small, then (104) and (105) can be

. . m . . .
solved by iteration. Let u represent the solution after m-1 iterations.

Then u" is defined as the solution of
F™ + Go(u*(m‘l)) =0, (106)
subject to the natural boundary conditions
T, @™ + B;(u*(m-l)) =0, xest, j =0,1,etc., (107)

Equations (106) and (107) are thus seen to follow from the application of the

variational principal (61) to the functional

*. *, * - * 'l * - *
W™ ,,J Fa™ + 6o ™1y ™dx + 5 j B O 1)y "My (108)
i/,
Vv Sl
An iterative Ritz procedure can be applied to (108), until a converged solution

for the cj is obtained.

The Method of Weighted Residuals
If a variational formulation does not exist, even approximately, then a
functional approximation method must be based on a direct formulation. To
accomplish this, (58) and (59) must be converted into functionals. To see
how this can be done, let us rewrite the Ritz procedure applied to a variational
formulation, in terms of the equivalent direct formulation. If we substitute
(26) and (66), and apply the variational principle (61) to all variations

Bcj, we obtain

.. 9g. . og -

[ 35 cwhax s 3 [BE B ¢ g sjeh « R BED ¢ daxm0, (09
j 1 i ] 3 J

v S
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where we used (60) and let Bi = ?; + Hi =0, Bi = ?1 + Hi = 0, etc., repre-
sent the extended natural boundary conditions in (59). (The principal
boundary conditions give aglacj =0, th/acj = 0, etc., on Si, and are assumed
satisfied by the choice of g(x;cj). Thus contributions to the boundary
integral terms in (109) will only come from the natural boundary conditionms.)
By using integration by parts and the divergence theorem (4), one can show the
equivalence of the sets of equations (109) and (100). But (109) could have
been obtained from the direct formulation by integrating (58) and the natural
boundary conditions (59) over their respective domains, after first multiplying
by appropriate weighting functions. Particular linear combinations of these
integrals then yield (109). Note that the weighting function for Bi(u) is the
same as that for G(u), but those for Bi(u), B%(u), etc., (if they are present)
are different.

The above considerations suggest that the direct formulation (58) and (59)

be recast in the equivalent weak form

J Y(x) G(u)dx = 0 , (110)
\

and .
J ¥(x) B (u)dx = 0, (111)
ol

where (110) and (111) are assumed valid for all arbitrary functions ¥ (x). A
functional approximation method can be obtained by choosing a finite set of
linearly independent weighting functions wj(x) to approximate ¥(x), and sub-
stituting (26) and each wj(x) in turn into (110). If G(u*) is termed the re-
sidual, the resulting set of equations is thus obtained by equating to zero the
integrals of weighted residuals over the domain. The method is therefore often
referred to as the method of weighted residuals. If all the boundary conditions

are not satisfied by the choice of (26), additional boundary residual equations
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(111) must be calculated. These normally use the same weighting functions as
in (110), although (109) shows that different weighting functions may be
appropriate for some Bi(u).

By analogy with the variational case, integration by parts can be used to
obtain integrals involving lower order differential operators. It is also
possible to combine equation residuals and boundary residuals in the same
equation, as was done in (109). To indicate these procedures, consider a
term in G(u) that can be written as a divergence 9F/3x. Then the integral

for that term can be written as

fwj ¥ ax = j yyoFdx - f by Fax l (112)
\'f S \'f
If one of the terms in Bi(u) is nF(u), it is then clear how (110) and (111) can
be combined to eliminate that term. Note that (112) imposes smoothness condi-
tions on wj(x). We will henceforth examine the method of weighted residuals
based on (110) with the understanding that these can be transformed by
integration by parts and combined with (111) to eliminate certain boundary
residual terms. When this is not possible, boundary integrals (111) would be
treated in the same manner as (110).
Let us generalize (110) by introducing the undiscretized variables t,
and considering integrations over the domain and boundary of the discretized
variables x. Thus, given (58), (26) and a set of weighting functions wj(x,t),

the method of weighted residuals gives the equations

f I,Uj (x,t) G[g(x;ci(t)]dxdo j=1toN (113)
\'
for the unknown functions cj(t). There are many possible choices for wj(x,t),
each one leading to a different method. They are fully discussed in the book

by Finlayson (ref. 20). The various classifications are briefly summarized below.

40

R s SR,




Method of Moments

If wj(x,t) form an arbitrary, linearly independent set of functions, we
have the general method of moments. Normally, it is restricted to functions
of x only, and are typically members of a complete set of functions. A

popular choice is polynomials in x.

Galerkin Method

In the Galerkin method, the weighting function is chosen to give the
same equations as those provided by a variational formula. It follows from
{109) that we must have

V. (x,t) = 2B [(xsc, (0)] (114)
j Bcj i
where g is considered a function of x and c; in performing the partial deriva-

tive, i.e., t is considered a fixed parameter. This is probably the most

popular method, particularly in finite element applications.

Least Squares Method

In this method we set

NERSIE -SE—J le(xsc, (0] , (115)

where again G(g) is considered a function of x and C;- The name of the method
becomes obvious on substituting (115) into (113) and interchanging integration
and differentiation, to obtain

,é%_- JGz[g(x;ci(t'))]dx:-’ao X (116)

J
While (116) minimizes the integrated square of the residual, a more logical
procedure would be to determine the maximum value of G2 in the domain for a
given choice of s and to minimize this maximum among all choices of cs-
While this has been used historically, it &s difficult to apply in practice,

and has been superseded by (116). One disadvantage of the least squares method
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is that the order of the differential operators cannot be lowered through

integration by parts.

Collocation Method

If we admit discontinuous functions for wj’ several new methods are
available, Let §5(j = 1 to N) be a set of n arbitrary points in the x domain,

called collocation points. Then if
by (x) = 8(x - ;J-) » (17)

where § represents the Dirac delta function, substitution of (108) in (103)

yields
G[g(ij;ci(t)] =0, (118)

i.e., the residual is set equal to zero at the collocation points; hence, the

name collocation method. Note that integration by parts is not possible.

Subdomain Method

If one divides the domain V into arbitrary subdomains Vﬂ, one can define
a less violent alternative to the Dirac delta function; namely, the

characteristic function

P.(x) =1 if st'j
J (119)
=0 if xfV .
Equation (113) now becomes
J G[g(x;ci(t)]dx =0 . (120)
el

Thus the integrated residual is set equal to zero in each subdomain Vj; hence,
the name subdomain method. Note that terms in G(u) that can be written as a
divergence can be converted via the divergence theorem (4) to integrals over
the boundaries of V9 involving lower order operators. This method is some-

times called the method of integral relations.
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Least Squares Collocation Method

The methods described above can often be combined. An example is the
least squares-collocation method. We start with the least squares method
(106), and approximate the integral by appropriate quadrature formulas ov;r
M arbitrary collocation points i&, where M > N. The resulting equations for

the parameters ¢ are

3

Be.

M
j i=1

M
w6 [g X, ¢, ()] =2 RAUCHSENOMN %jc[g-(ii;ckct))] =0.
(121)

In practice, one often chooses Wy = 1. As M approaches infinity, the method
approaches the least squares method. On the other hand, if M = N and
aG[g(')-("i;ck(t)]/Bcj is non-singular, then (111) is reduced to the collocation
method (108) (assuming that all w; are non-zero).

The equivalence of the N-point quadrature approximation to the least
squares method and the collocation method can be generalized to any residual
method involving continuous weighting functions. Omitting the dependence on
t, we can write the N-point quadrature approximation to (113) as

N P —

j qgj (x)G[g(x 36, ) 1dx = iil wiwj (xi)G[g(xi ;Ck)] 220 ., (122)

\'
This reduces to the collocation method if ¢3(§i) is non-singular and w, are
non-zero. Thus, if the integrals in a residual method are too complex to
evaluate analytically, and no integration by parts is employed, an N-point
quadrature approximation is identical to a collocation method. By a judicious
choice of collocation points Ek, this method gives results whose accuracy is
consistent with the original functional approximation. The choice can be
made rational if the functional representation is linear, which is the case

we consider next.
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Linear Functional Approximation
All the methods described so far have been considered for a general
functional approximation (26). In practice, one normally uses the linear
representation (28). This simplifies some of the methods. For example, the

weighting function for the Galerkin method becomes
w.j (x) = ¢5 =), (123)

i.e., the weighting functions are the basis functions themselves. If ¢j(x)
are given by (78), i.e., if (28) is a finite Fourier series, then the Galerkin
method "is called a spectral method (ref. 21).

A linear representation allows the introduction of nodal parameters as
unknowns by choosing an arbitrary point discretization X . It is then
possible to establish a correspondence with finite difference methods. The
most obvious one is through the collocation method. If the collocation points
are identified as the evaluation points, it is evident that the collocation
method is identical to a nodal finite difference method employing a global
functional approximation. The method of differential quadrature has its
analogue in the collocation method, where it is referred to as orthogonal
collocation,

Most conventional finite difference methods employ local functional
approximations. Since those functional approximation methods based on discon-
tinuous weighting functions (i.e., collocation or subdomain) yield equations
evaluated at disjoint points or subdomains, one can generalize them by per-
mitting local functional approximations. One can then say that all convention-
al finite difference methods are collocation methods using local functional
approximations. Similarly, one can consider finite volume difference methods
as subdomain methods (with the divergence theorem applied) using local

functional approximations. Finally, the Euler difference method may be
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thought of as a variational-collocation method using local functional approxi-
mations.

Weighted residual methods using continuous weighting functions, and
which do not employ quadratures, can only be formulated in terms of a global
functional approximation. Even for discontinuous weighting functions, a
global functional approximation may be preferred. For complex domains, the
integrals resulting from such a global approximation could not be calculated
analytically. Even for one-dimensional or tensor product approximations,
global functional approximations would lead to dense matrices. Both of
these difficulties can be avoided by using piecewise functional approximations,

which will now be discussed.

Finite Element Methods

Any functional approximation method using a piecewise functional repre-
sentation is termed a finite element method. Thus, the domain of x is divided
into M volume elements Vk, called finite elements, and a set of N global
nodes xj, and their associated nodal parameters u;(t). (We assume a Lagrange
representation for now.) For each element Vk we have a set of local coordin-
ates xk, Nk local nodes xf, the associated local nodal parameters u;k(t), and
element cardinal basis functions75§(xk). The latter are called element shape
functions. The representation of u*(x,t) in element Vk is

X
* N"
SO RS (t)fﬁ';(xk) X (49)
1

2=
The use of (49) in the two types of functional approximation methods will be

briefly outlined.

Variational Finite Element Method

We will describe the Ritz method for simplicity. The variational formula-

tion (99) and (100) can be easily reformulated in terms of the finite elements.

k

Let I" be the contribution to the integral functional (99) from element Vk,'
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given by
Nk
k. *k #k a~k . k.. 3x k i *kek . k.. 9x
I'(u )#JF[Zu?(x dx +EJH I ou, Br(x dx
3 S e g PRI w el Iy

Vk Sk1

k

(124)
Here Bx/axk represents the transformation Jacobians for elements Vk and the
element boundaries Ski. The boundary integrals exist only for elements lying
on the global boundary, with contributions coming from those boundaries Si
that border element Vk. From (126) one can then determine BIklau;k . By
means of the mapping between local and global node numbers, this can be
rewritten as BIk/Bu; , in terms of global nodal parameters. The variational

principal (100) is obtained by summing over all the elements, i.e.,

M aIk
I —3=0 , j=1toN. (125)
k=1 auj

Note that contributions to (125) come only from elements containing global node
x., and the resulting equation involves only the nodal parameters contained
in those elements. This insures sparse matrices in the solution of the

algebraic system (125).

Residual Finite Element Methods

The method of moments does not provide a useful finite element method,
since the weighting function is not localized. The most popular method is the
Galerkin method. Omitting the dependence on t for the moment, if xﬁ is the
local node in element Vk corresponding to global node xj, it follows from
(123) and (113) that the contribution to (113) from element Vk is

Nk
k. *k k. k * k., 9x k
IS (u ©) = I?ﬁ(x )6 [ 2 wihed) ek . (126)
X m=1 9x
\'A

If (126) is renumbered with a global node numbering, and written as I? in

terms of global nodal parameters, then (113) becomes
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Mok

I I. =0, j=1toN, (127)
k=1 J :

where contributions to (127) again come only from elements containing node

xj. If part of G(u) had been integrated as in (112) to create boundary
integrals, then additional boundary terms would be needed in (126) for nodes xj
on the global boundary.

The least squares finite element method is formulated in a manner
similar to the variational method, based on (116). The collocation finite
element method follows directly by substitution into (118). If some of the
collocation points E} lie on element boundaries, then Hermite or spline
representations are required to provide sufficient smoothness to calculate
the operator G. Lower order representations are sufficient if all the colloca-
tion points are in the interior of elements.

An important advantage of finite element methods is that prescribed
boundary conditions on global boundaries are simply satisfied by setting the
appropriate nodal parameters equal to their boundary values. Equations (124)
or (126) would not be calculated for those nodes. Derivative boundary condi-
tions can be satisfied by using Hermite shape functions. The number of un-
known nodal parameters can be further reduced when some of the elements
contain interior nodes. If xj is an interior node located inside element
Vk, then (125) (or (127)) is the only equation involving u; . The set of
equations for all the interior nodes in Vk can be solved for the interior
nodal parameters in terms of the nodal parameters on the element boundary.

By this process, called condensation, the final set of equations contains

only nodal parameters associated with nodes on interelement boundaries.

CONCLUSION °
Finite difference methods have been discussed from a rather unorthodox

viewpoint in order to bring out their relationship to functional approximation
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methods. Let us now examine this relationship by first comparing the nodal
finite difference method with the finite element method. Both methods rely
on a discretization of the x domain into nodes and the introduction of
associated nodal parameters to represent the unknown function u(x). It is
in the manner in which one obtains equations to solve for these parameters
that the two methods diverge.

The finite element method requires two additional discretizations. One
is the discretization inherent in the global functional approximation which
permits an unambiguous evaluation of u, or any operator on u, at an arbitrary
point x. The other discretization, which is peculiar to the finite element
method, is the additional discretization of the X domain into volume elements
that define a piecewise functional approximation. These three discretizations
are not independent, but are interrelated to provide desired smoothness to the
approximation with the minimum of complexity. It is the achievement of these
two contradictory goals that is the hallmark of the art of the finite element
method. Finally, a variational or weighted residual method must be chosen
to define appropriate integral functionals. The latter choice also involves
some ingenuity, since integration by parts for continuous weighting functions,
or proper choice of collocation points, can lessen the smoothness requirements.
The choice of method is thus also coupled to the three discretizationms.

The conventional nodal finite difference method is essentially a
collocation method, with nodes and collocation points aligned along coordinate
lines if x is multidimensional. The finite difference approximations to the
governing equations can be interpreted as resulting from local functional
approximations. The approximation can therefore vary from point to point,
and even for individual terms in equations. The art in the finite difference
method is to use this great flexibility to obtain efficient and stable

solutions.
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The power of the finite element method lies in its ability to handle
complex boundaries through the freedom in choosing the volume discretizations,
and the ease in satisfying boundary conditions. An additional advantage
exists for variational and certain weighted residual methods, where we can
deal with operators of lower differential order and admit approximations of
lower smoothness. Since a single global functional approximation is required,
the method appears to be less flexible in dealing with the complex physical
phenomena associated with highly nonlinear equations, such as those of fluid
dynamics. Some progress has recently been reported in simulating type
differencing (ref. 22) and upwind differencing (ref. 25) within the finite
element method.

The nodal finite difference method has the flexibility to cope with the
phenomena associated with the complexities of the equations. On the other
hand, boundary conditions can be satisfied accurately in practice only if the
boundaries are coordinate surfaces. Here the recent work of Thompson (ref. 24)
is generating coordinate systems for arbitrary surfaces gives promise to free
the finite difference method from its major disadvantage. The use of piece-
wise approximations (a finite element concept!) to represent arbitary surfaces
can also play an important role.

For initial boundary value problems, finite volume differencing can be
thought of as the subdomain method with local functional approximations. Since
it also results in lower order differential operators, it can be said to
possess the other advantage attributed to finite element methods. Actually,
its ability to treat discontinuities easily gives it somewhat of an advantage.

In conclusion, finite element methods are best designed to handle complex
boundaries, while finite difference methods appear to be superior for complex
equations. Time and further research will tell if one of the methods will be
able to overcome its shortcomings and emerge as clearly superior in solving

boundary and initial boundary value problems.
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